

Overall System Design and Implementation of Main/Backup ATM Automation System

1 General introduction

2 Synchronization in Chengdu ACC

3 Relevant operational Issues

Overall System Design

☐ Two automation systems in one ATC centre

- Work as main/backup systems
- Different vendors
- > Similar HMIs functions
- Difference in system design reducing the risk of simultaneous system failure: reason to prefer different vendors

Overall System Design

- ☐ Final purpose: undegraded ATC services without interruption
- ☐ Challenge: switchover process
 - Reconfigure the backup system
 - > Take time
 - May lead to mistakes
- □ Solution: real-time synchronization

- □ 2012 : Research and test
- □ 2015 : MH/T 4029.3 Civil Aviation Air Traffic Control Automation System- Part 3: Flight Data Exchange
 - Cat I: flight data exchange message
 - Cat B: main and backup ATC system exchange message
 - Cat C: ATS unit exchange message

□ 2017 : CNS SG/21

- ➤ IP14_China AI. 6.2 Data Synchronization
 between ATC
 automation systems
- Attract great interest from States in data synchronization

CNS SG/21 – IP/14 Agenda Item 6.2 13/07/17

International civil aviation organization

TWENTY FIRST MEETING OF THE COMMUNICATIONS/NAVIGATION AND SURVEILLANCE SUB-GROUP (CNS SG/21) OF APANPIRG

Bangkok, Thailand, 17 - 21 July 2017

Agenda Item 6.2: Other surveillance related issues

DATA SYNCHRONIZATION BETWEEN ATC AUTOMATION SYSTEMS

(Presented by China)

SUMMARY

This paper presents the philosophy, standard and implementation of data synchronization between ATC automation systems on the same site, and the improvement on the operation continuity and robustness.

- □ Real-time synchronization realized in 16 ATC centers so far
 - Changchun/Changsha/Chengdu/Chongqing/Dalian/Guiyang/ Hailar/Harbin/Kunming/Lanzhou/Nanning/Nanchang/Shenyang/ Urumchi/Wenzhou/Zhengzhou
 - AirNet/NUMEN/SkyNet/ATC3000/INDRA
- □ Another 16 ATC centers by 2019/Total 47 ATC centers by 2023
 - Eurocat/TELEPHONICS/CDZS-MH
- Improved safety and reliability of ATC services in China

1 General Introduction

2 Synchronization in Chengdu ACC

3 Relevant operational Issues

Automation Systems in Chengdu ACC

□ Similar HMIs

☐ Discrepancy in system design

Automation Systems in Chengdu ACC

□ Synchronization operation since 2013

- Three synchronization design ideals
- Three kind of data used in synchronization
- Two kind of system working mode

Synchronization Design Ideals

- □ Core content of the synchronization
 - Operations in the HMIs, including actions and configurations
- □ Benefit
 - Save switchover time
 - Bypass the discrepancy of the two systems

Synchronization Design Ideals

- □ Pattern of the synchronization
 - Focus on the results
- □ Example
 - For the flight handover operation: only the current jurisdiction of each flight
- □ Benefit
 - Avoid complex system processing part

Synchronization Design Ideals

□ Mapping function in the synchronization

- Different predefined data like flight plan status
- Receive the flight plan status
- Map it into one of its own status
- Process it with its own logic

□ Benefit

Ensure the validity and stability of the synchronization

ICAO Data Used in Synchronization

□ Synchronization Structure

Data Used in Synchronization

☐ Flight data

- Flight plan data creation, modification, cancellation and deletion
- Flight handover
- CFL input, SSR code assignment/release
- Runway/SID/STAR assignment of the flight plan and so on

```
Recibido
                          E 3 G H I J 1 J 2 J 4 J 5 M 1 P 2 R X 7
```


Data Used in "- Synchronization

□ Environment data

- Sectorization of the whole system
- Runway configuration
- Restricted/other area status and so on

☐ System tracks

 Correlation information: manual correlation by the controllers

```
MSG ID 6 Length 22
RUNWAYS SID & STAR
 Airport: ZUZH
Nb of Rwys 2
      02
State runway DEPARTURE_&_ARRIVAL
  of SID O
Nb of STAR
State runway CLOSE
      SID
   of STAR
```


System Working Mode

□ Fallback working mode, Disable:

- Auto SSR code assignment function
- Auto runway/SID/STAR assignment function
- Auto AFTN message sending function/AIDC function
- Sound alerts in positions
- Data link

□ Operational working mode

- Enable the corresponding functionality
- Stop receiving and processing the messages from the main system

ICAO Future Upgrade

☐ Application already realized in some other ATC centers

- HMIs config synchronization: Map centre/Display range
- Bi-directional synchronization

1 General Introduction

2 Synchronization in Chengdu ACC

3 Relevant operational Issues

Prevention of System Failure Extension

- □ Independent internal processing
 - Receive the input of surveillance data and flight data respectively
 - Process the data independently
- □ Quick measure when an unexpected failure happened in the main system
 - Suspend the synchronization by working mode switch

Parameter Consistency

☐ Challenge in operation

- Hard to load the new offline parameter at the same time
- Main/backup systems with different parameters
- May cause synchronization failure

□ Solution

- > Assess the impact of parameter discrepancy in advance
- Introduce relative protection measures.

